広域的な外水氾濫リスク評価のための河川断面データベースの構築

Construction of river cross-section database for a wide range of river flood risk assessment

○久松 力人¹, 篠塚 義庸¹, 堀江 啓¹ Rikito HISAMATSU¹, Yoshinobu SHINOZUKA¹, Kei HORIE¹

1株式会社インターリスク総研 総合企画部

Corporate Planning Department, InterRisk Research Institute & Consulting, Inc.

High quality and homogeneous data on river cross-sections is required for wide range of flood risk assessment based on sophisticated simulation. This paper aims to construct homogeneous river cross-section database. Firstly, we selected 50 risky rivers for insurance market from class-A rivers in Japan. Secondly, we acquired data for river cross-sections of selected rivers from public institutions. Thirdly, the data was refined through a unified treating process including removal of influence of artificial structure. Finally, we developed digital database of river cross-sections.

Keywords : River cross-section, Database, River flood, Wide area

1. はじめに

近年,保険業界において世界的に保険損害額が増加し ており、とりわけ風災や水災による損害の増加傾向が顕 著にみられる¹⁾.また近年では台風のみならず局地的大 雨や爆弾低気圧,あるいは地球温暖化に伴う気候変動等 を要因とするような水災リスクへの世間の関心も高まっ ている.平成27年9月には、台風18号等の影響による 大雨が原因で鬼怒川の水位が上昇し、越流や破堤により 約40km²が浸水するような被害が発生した²⁾.

損害保険会社では自社の広域的なポートフォリオの自 然災害リスクを各種シミュレーションソフトにより計算 しているが、様々な自然災害の中でも、特に外水氾濫リ スクの定量的な評価の精度には課題が残る.その要因と して、精緻な外水氾濫解析には地形データ、河川データ、 貯留施設など様々なデータが必要となり、広域的なリス ク評価モデルの構築が難しいことが挙げられる.特に外 水氾濫解析に重要となる河川断面データの整備が大きな 課題になっている.

河川断面に関するデータベースの整備は進行している が、一般への公開には至っていない³⁾.また、河川断面 の測量データは、河川を管理する各自治体が所有してお り、それらのデータの質や形式が一定に保たれていない 現状にある.そのため、損害保険会社のような広域的な ポートフォリオの外水氾濫リスクの計量には、均質な河 川断面データを広範に揃えることが求められる.

そこで本研究では、国内の一級河川を対象に、均質な 断面データの作成を目的として、まず外水氾濫リスクの 高い河川を選定し、それらの断面データを入手した.そ して入手したデータの高さ基準面を統一し、人工構造物 の影響を除去するなど、統一的なデジタルデータ化手順 により、河川断面データベースを構築した.

2. 研究方法

(1) 手順の概要

河川断面データベースの構築手順を図1に示す.まず, 対象河川を選定し,次に対象河川の断面データを入手す る.その後,デジタル化と並行してクリアリング処理を 行い、均質な河川断面データベースを構築した.

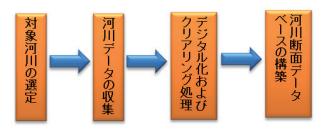


図1 本研究のフロー

(2) 対象河川の選定

本研究では50河川を対象として、河川断面データベースを構築した.対象河川の選定は、まず、複数の損害保険会社より火災保険エクスポージャの位置と保険価額の情報を入手した.また、国交省管轄の一級河川のハザードマップを入手した⁴⁾. 次に GIS を用いてハザードマップ上に重なるエクスポージャ情報を抽出した.河川毎に浸水想定区域と重なる保険価額を集計し、上位50河川を選定した.本研究では選定した 50河川の主に本川の断面情報を国交省から入手し、データベース作成に用いた.

(3) デジタル化およびクリアリング処理

入手した河川断面を統一した手順に基づきデジタル化 することにより、均質なデータを作成した.横断図の測 量年度は、各断面における最新の測量結果に基づいてデ ジタル化を行った.工事中等の影響から一部の最新の断 面図が不足している場合には、次に新しい測量成果を用 いて横断面を補間した.本研究で用いた横断面の測量年 度は1999年~2014年であり、うち直近5年の測量成果 のみを用いた河川は28本、直近10年では46本である. 元図面に含まれる情報のうち、天端上や堤内地の構造物 には、パラペットや縁石までは横断面に含み、局地的に 存在する建物や塀は除いてデジタル化した.堤外地の構 造物については、堰や橋脚は除いてデジタル化を行った. 横断方向の座標原点は河床の最深点とし、最深点が複数 存在する場合にはすべて右岸側に統一した.なお横断面 は原則 1km ピッチでデジタル化を行い、1km 毎の横断面 取得が困難な場合には、データ間隔が可能な限り 1km 以 内になるよう横断データをデジタル化した.横断データ の鉛直方向の高さ基準面はデータにより異なるため、全 て東京湾平均海面に統一し、T.P.0mを鉛直方向の座標原 点とした.

断面位置情報は、横断面の最深位置の緯度経度を求め て、数値化することとした.国交省の測量成果のうち、 平面情報としては河川平面図(CAD図,紙図)もしくは 距離標一覧を活用した.

a) 河川平面図が CAD 図の場合

まず平面図および横断図の左岸の距離標から右岸の距 離標までの距離が一致するかを確認した.一つの岸に複 数の標が存在する場合は,左岸から右岸の距離が等しく なる標を特定した.次に最深位置の特定にあたっては, 左岸の距離標の位置を基準として最深位置までの距離と 方向を求め,そのポイントの緯度経度情報を取得した. 距離については横断図上で左岸の距離標から最深点まで の距離とし,方向については左岸の距離標から右岸の距 離標へ向かう方向とした.

b) 河川平面図が紙図の場合

上記作業の前に,図面を基に GIS 上で各距離標位置を プロットする作業を行った.

c) 距離標一覧を用いる場合

平面直角座標系からの座標変換を行い, GIS 上に読み 込んだ状態で上記の a)の場合と同様の作業を行った.

(4) 河川断面データベースの構築

選定した 50 河川の主に本川について,河川断面の横断 データと各横断面の最深地点における平面座標データの 2 種類を統一のフォーマットでとりまとめ,データベー スを構築した.

3. 研究結果

(1) 対象河川の選定

損害保険会社のエクスポージャ情報とハザードマップ から、本研究における対象河川を選定した(表1).

北海道	石狩川	中部	狩野川	中国	千代川
	釧路川		安倍川		日野川
東北	北上川		天竜川		斐伊川
	阿武隈川		豊川		旭川
	最上川		矢作川		高梁川
	岩木川		庄内川		芦田川
	名取川		木曽川		太田川
	赤川		鈴鹿川		佐波川
	雄物川	近畿	淀川	四国	土器川
関東	利根川		大和川		吉野川
	荒川		加古川		那賀川
	多摩川		揖保川		筑後川
	鶴見川		紀の川		嘉瀬川
	富士川		九頭竜川		白川
北陸	信濃川			九州	緑川
	常願寺川				球磨川
	庄川				大淀川
	手取川				五ヶ瀬川

表1 本研究の対象河川

(2) 河川断面データベースの構築

構築したデータベースのサンプルを図2に示す.また データベースは全て T.P.基準に統一し,国土数値情報の 標高データの基準とも一致しており、外水氾濫モデルの 地形情報との結合が容易となる.本データベースと基盤 地図情報の標高データを重ねた活用事例を図 3 に示す⁵⁾.

横断	座標	平面座標				
1km地点			_			
X	Z	断面No.	河口からの距離 (km)	緯度	経度	
-680.538		1	0	38.0500	140.9212	
-670.538		2	1	38.0500	140.9093	
-669.173		3	2	38.0598	140.9038	
-669.083		4	3	38.0682	140.9113	
-669.083	-0.577	5	4	38.0771	140.9060	
-668.483	-0.577	6	5	38.0853	140.9017	
-668.483	0.023					

図2 河川断面データベースの一例(一部抜粋)

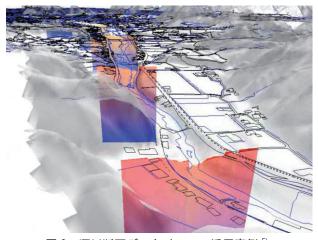


図3 河川断面データベースの活用事例 5)

4. おわりに

本研究では,損害保険会社のエクスポージャ情報と国 交省の洪水ハザードマップから外水氾濫リスクが高い 50 河川を選定し,河川断面およびその位置情報の均質的な デジタルデータ化を行い,広域的な河川断面データベー スを構築した.本研究成果は,今後の広域的な外水氾濫 シミュレーションへの活用に有用であると考えられる.

今後の課題として、河川定期縦横断データ作成ガイド ラインに従ったデータへの迅速な統一や人工構造物の処 理方法の標準化を行う必要がある.標準化されたデータ ベースの一般への公開により、利用者側での外水氾濫シ ミュレーション等における作業プロセスの大幅な削減が 期待できる.

参考文献

- Munich Re:TOPICS GEO Natural catastrophes, p. 58, 2013
- 2) 国交省: 第1回 鬼怒川堤防調査委員会資料, p. 31, 2015
- 3) 財団法人河川情報センター:河川構造物データベースについて,2012
- 4) 国交省:国土数値情報 浸水想定区域データ, http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmp lt-A31.html, 2015年3月最終閲覧
- 5) 国土地理院:基盤地図情報,2015年1月最終閲覧