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   This paper presents a case study of a flood disaster in Nagano City in 2019, conducting a flood analysis utilizing GPS 

data. The time and spatial changes of the flood disaster are studied by filtering, classifying, and overlaying GPS data 

from October 12th to October 14th, 2019, in combination with precipitation and river water level data The study results 

indicate that there is a correlation between the time of occurrence of GPS abnormal data and the occurrence of flood 

disaster, and there is also a correlation between the distribution of GPS abnormal data and the flood area during the 

flood. This study demonstrates the significance and practicality of GPS data in flood disaster analysis, providing 

valuable insights for enhancing flood disaster response capabilities and urban planning. 
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1. Background 

 
Flood, as one of the most common and devastating natural 

disasters1), inflicts significant losses and impacts on human 

society2). Many cities worldwide are under the threat of flood 

disasters, and Japan, as a country in the East Asian monsoon 

region, is particularly vulnerable to extreme weather such as 

typhoons and heavy precipitation3),4). 

In October 2019, the Typhoon Hagibis had severe 

consequences, including torrential rains, floods, and landslides, 

causing extensive damage to house and roads5). The heavy 

precipitation from the typhoon resulted in the collapse of the 

riverbanks along the Chikuma River in Nagano City, leading to 

severe flooding in the surrounding areas6) and posing significant 

challenges to rescue and recovery efforts7). 

 When this kinds of large scale flood strikes, the information 

and communication networks might be disrupted, resulting in a 

lack of information of the affected areas8). This situation makes 

it difficult to evaluate where and what kind of damage has 

occurred and causes delays in disaster response9). To overcome 

this difficulty, satellite remote sensing technologies have been 

developed to assess damage in flooded areas using satellite 

images (e.g., Mohamed, 2019; Skakun et al., 2014; Tariq et al., 

2021; Tellman et al., 202110)–13)). However, because satellites 

have a return period, it is sometimes difficult to immediately 

assess the situation of the affected area14). 
In this study, we focused on the GPS (Global Positioning 

System) installed in smartphones. With smartphone GPS data, 

people flow can be estimated in near real-time15). On the other 

hand, in flooded areas, there is a possibility of losing information 

on the GPS of the victims' cell phones16)–18). In this study, we 

considered the possibility of using this principle to estimate the 

flood area. In recent years, with the continuous development and 

widespread application of GPS technology, this technology has 

gained increasing attention in the field of natural disasters19). 

Compared to conventional methods using satellites and drones20), 

GPS data offers unique advantages in flood disaster 

monitoring21). Providing high-precision spatial and temporal 

information, GPS data offers new perspectives and methods for 

analyzing and researching flood disasters22). Utilizing GPS data 

for flood disaster analysis allows for a more accurate 

understanding of the propagation path23), and this information 

may provide valuable information for the flood area24),25), and 

the impact of floods26), thereby aiding the formulation of 

effective response measures and post-disaster recovery plans. 

Furthermore, the near real-time nature of GPS data enables 

monitoring the evolving process of floods27), offering crucial 

disaster information for timely emergency response and 

decision-making support28). Therefore, the application of GPS 

data in flood disaster time analysis holds significant academic 

value and practical significance, offering assistance in 

improving flood disaster response capabilities and urban 

planning29). 

While it would be a useful technology to predict the flood area 

based on changes in the number of GPS complements30), a 

challenge makes this problematic: the location information 

obtained from the GPS is very limited and fragmentary31). To 

obtain GPS information, the smartphone GPS function must be 

set up in advance so that the data can be retrieved, but many 

users of mobile phones turn off the functionality of their 

phones32). Therefore, we need to think of a method to estimate 

the flood area from a limited number of GPS locations. 
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Towards this orientation, this paper aims to use GPS data to 

conduct a time and spatial analysis of the 2019 flood disaster in 

Nagano City. Explore the impact of GPS data on the city and its 

disaster prevention significance, thereby providing valuable 

insights for enhancing flood disaster response capabilities and 

urban planning. The study findings are expected to offer flood 

disaster management recommendations for Nagano City and 

other potentially affected regions, ultimately strengthening the 

city's resilience against natural disasters. 

 

 

2. Research Area and Research Data 

 

（1）Research Area 

As shown in Figure 1, the research area of this paper is 

Nagano City, located in the central part of Honshu Island, Japan. 

Nagano City serves as the capital city of Nagano Prefecture and 

is the largest and most populous city in the prefecture. The 

convergence of the Chikuma River and the Sai River in Nagano 

City brings abundant natural resources but also makes it 

susceptible to disasters such as floods. 

The main objective of this study is to conduct a 

comprehensive analysis of flood disaster of Nagano City in 2019 

in time and spatial. As shown in Figure 2, 189 administrative 

districts were selected from a total of 433 districts in Nagano 

City, with an average elevation of 380 meters or below, to 

accurately study the low-lying areas at higher risk of flooding. 

 

 

（2）Research Data 

The research data includes precipitation and river water level 

data for Nagano City from October 12th to October 14th, 2019, 

as obtained from the Ministry of Land, Infrastructure, Transport, 

and Tourism of Japan, as shown in Figure 3. The research period 

is selected from October 12th to October 14th, 2019, during 

which October 12th experienced heavy rainfall in Nagano City, 

and from the 12th to the 14th, the Chikuma River embankments 

collapsed, and floods occurred. 

 

 

 
Figure 1 Location of Nagano City 

GPS location data were collected from a smartphone 

application provided by Agoop Corp. The data underwent of 

location information. The anonymous nature of the data 

anonymization and statistical processing to form a large dataset 

prevents the identification of specific individuals' locations but 

reflects the overall population's positional changes. There are a 

total of 26 fields in these data, and this study uses a total of 12 

fields as shown in Table 1. 

 
Figure 2 Altitude of Nagano City 

 

Figure 3 Precipitation data in Nagano City and water level data 

in Chikuma River 

 
Table 1 GPS data fields 

Data field Data interpretation 

dailyid User daily ID 

year Year 

month Month 

day Day 

dayofweek Day of week 

hour Hour 

minute Minute 

latitude Latitude 

longitude Longitude 

accuracy GPS Accuracy 

prefcode Prefecture code 

citycode City/town/village code 
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Figure 4 flood area in Nagano City 

 
Furthermore, the basic boundary data of Nagano City and the 

flood disaster extent data, as shown in Figure 4, were obtained 

from the website of the Ministry of Land, Infrastructure, 

Transport, and Tourism of Japan. 

 Through the analysis of the above data, this study aims to 

delve into and analyze the correlation between flood disasters 

and GPS data changes.  

 

 

3. Research Method 

 

（1）Data Selection and Processing 

Data from October 12th to October 14th, 2019, were selected 

from the data source. The data corresponding to Nagano City 

was selected based on its specific data code (20201). As the 

research area encompasses administrative districts in Nagano 

City with elevations below 380 meters, the data was visualized 

using ArcGIS Pro to extract the data within the geographical 

extent of the research area.  

 

（2）Data Accuracy Processing 

The accuracy of GPS data is measured in meters (m), 

indicating the potential location within a circle centered at the 

given point with the accuracy as its radius. According to 

information released by Agoop Corp., the accuracy of GPS data 

is approximately 70%. Setting the precision threshold to 100 

meters results in retaining approximately 70% of the total data. 

In order to ensure data quality, the accuracy threshold is set at 

100m, and data with an accuracy exceeding 100m will be 

excluded. This is mathematically represented as: 

Processed dataset = { GPS data | accuracy ≤ 100 }             [1] 

The distribution of processed GPS data for each day is shown 

in Figure 5. 
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Figure 5 GPS data distribution map 
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Figure 6 shows the GPS data amount for each hour from 

October 12th, 2019, to October 14th, 2019. It can be observed 

that there is no significant variation in the overall GPS data 

volume daily. GPS data is generated in real-time based on the 

movement of the location; when there is no movement, the 

position information is only periodically updated. Therefore, the 

GPS data volume is relatively low at night, partly because some 

individuals turn off their phones while sleeping, and primarily 

because most people do not change their positions during the 

night. The stability daily and the variability on an hourly basis 

of this data demonstrate its ability to accurately reflect 

population movement, indicating a certain level of accuracy. 

 

（3）Data Classification 

The total duration of the study is 3 days, totaling 72 hours. To 

observe the changes in the GPS data, the three days are divided 

into 12 evenly spaced time intervals, each spanning 6 hours. This 

division of time provides sufficient spatial and temporal 

resolution to quickly determine the time period and date of the 

flood. 

Let D represent the GPS data set. Each time interval is 6 hours 

long and can be represented as follows: 

D = { D1, D2, …, D12 }                           [2] 

D1 represents the GPS data set for the first six-hour interval, 

D2 represents the GPS data set for the second six-hour interval, 

and so on until D12 represents the GPS data set for the twelfth 

six-hour interval. Table 2 shows the amount of GPS data points 

in each classified dataset.  

 

（4）Constructing Geographic Grid 

To delve into the temporal and spatial changes in GPS data, a 

geographic grid construction approach was employed. The 

construction process took into consideration grids of varying 

specifications with side lengths of 100m, 300m, and 500m, and 

the quantity of grids for each specification is detailed in Table 3. 

Through hourly statistical analysis of GPS data from October 

12th to 14th, 2019, it was identified that the time interval, with 

the least GPS data occurred from 3:00 to 4:00 on October 14th, 

registering only 5331 data points. This count was below the 

quantity of grids with 100m and 300m side lengths. To maintain 

data accuracy while avoiding overly sparse or dense data 

distribution, a decision was made to opt for a grid with a 500m 

side length, totaling 1222 grids, serving as the fundamental unit 

for our study. 

 

（5）Data Overlay 

Using “Spatial Join” in ArcGIS Pro, the GPS data for each 

six-hour time interval was overlaid onto the corresponding grid 

cells, and the “Join Count”, representing the number of GPS data 

points in each grid cell, was calculated. The formula is 

represented as follows:  

C =  Spatial Join （D, R）                   [3] 

    D represents the GPS data set, R represents the geographic 

grid data set, and Spatial Join (D, R) refers to overlaying the GPS 

data set onto the grid data set R and calculating the GPS data 

count for each grid cell C. 

Additionally, the flood area for Nagano City obtained from 

the website of the Ministry of Land, Infrastructure, Transport, 

and Tourism of Japan, and it was overlaid onto the grid cells to 

create the flood grid data as shown in Figure 7, which would be 

used for subsequent analysis of flood time and area. 

 

 

 

Figure 6 Amount of GPS data amount per hour 

 

 

 

Table 2 Amount of GPS data in dataset 

Dataset 
Amount of 

GPS data 
Dataset 

Amount of 

GPS data 

D1 34538 D7 60705 

D2 53717 D8 48939 

D3 56220 D9 34295 

D4 49757 D10 52113 

D5 42735 D11 59942 

D6 56446 D12 48669 

 

 

Table 3 Number of grids with different side lengths 

Length Number of grids 

100m 56,400 

300m 6,320 

500m 1,222 

 

 

 
Figure 7 Flood area and flood grids in Nagano City 
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（6）Overall Analysis of Flood Disaster 

Based on the results from 12 time intervals, a comprehensive 

analysis was conducted on flood disasters and GPS data. This 

analysis aimed to pinpoint the exact date of the flood occurrence, 

identify the 6 hours’ time interval involved, and approximate 

flood area. This serves as a crucial reference for subsequent 

detailed temporal and spatial analyses. 

 
（7）Flood Time Analysis 

Based on the overall analysis of the flood disaster, it 

quantitatively compares the changes in the hourly GPS data, 

analyzes and determines the time of the flood. Urban population 

mobility is influenced by various factors, including not only the 

disaster itself but also seasonal changes, weekdays, and 

weekends. For example, temperature fluctuations may lead 

people to prefer indoor activities, and commuting routes during 

weekdays may differ from those on weekends. 

To mitigate the impact of seasonal changes, data from the 

week before and after the flood were selected for comparative 

validation. That is, the two weeks from September 29th to 

October 5th and October 20th to 26th. Simultaneously, to reduce 

the differences between weekdays and weekends, separate 

calculations and analyses were conducted. 

The data from the week before and the week after the flood 

were defined as normal date GPS data, while October 12th to 

14th, 2019, was considered an abnormal date. Under normal 

circumstances, the quantity of GPS data fluctuates within a 

certain range. Any deviation beyond this range indicates 

abnormal GPS data. In normal conditions, the expected quantity 

of GPS data at the same time fluctuates within a certain range, 

which can be modeled by constructing a normal distribution to 

identify abnormal GPS data. 

Specifically, by calculating the mean and standard deviation 

of the normal distribution of GPS data for each hour in the week 

before the flood and the second week after the flood occurrence, 

a mathematical description of the normal distribution of GPS 

data under normal conditions was obtained. The calculation 

formulas are as follows: 

Normal Distribution: 𝑓( 𝑥 ∣∣ 𝜇, 𝜎2 ) =
1

√2𝛱𝜎2
·  𝑒

−
（𝑥−𝜎）

2

2𝜎2  [4] 

Mean: 𝜇 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
  [5] 

Standard Deviation: :𝜎 = √
∑ (𝑥𝑖−𝜇)2𝑁

𝑖=1

𝑁
  [6] 

𝑁 is the number of normal dates and 𝑥𝑖 is the number of GPS 

per 𝑖 hour. 

As 99.7% of data falls within the mean ± 3 standard deviations 

in a normal distribution, data points outside this expected range 

are considered outliers. Therefore, by comparing the hourly GPS 

data for abnormal dates with this range, the time of the flood 

occurrence can be determined. 

The calculation formulas are as follows: 

{
𝜇 − 3𝜎 ≤ 𝑋𝑖 ≤ 𝜇 + 3𝜎

𝑋𝑖 < 𝜇 − 3𝜎, 𝑋𝑖 > 𝜇 + 3𝜎
  {

0
1
  [7] 

𝑋𝑖 is the number of GPSs per  𝑖 hour in the abnormal date, 

and  𝑋𝑖 is assigned a value of 0 if it is in the range and 1 if it is 

not in the range. 

 

 

 

(8) Flood Area Analysis 

By quantitatively comparing the changes in GPS data for 

different grids at different time intervals, the spatial information 

of GPS data changes was calculated. Through this method, we 

can identify the geographical areas with abnormally changing 

GPS data, corresponding to the areas affected by the flood. 

Building on the flood event analysis, we calculate the GPS 

data volume within each grid during the time of flood occurrence. 

Under normal circumstances, the volume of GPS data for the 

same grid during the same time interval should also vary within 

a certain range. An exceeding range indicates abnormal data. 

Therefore, a normal distribution model was similarly 

constructed. Based on the time intervals calculated from the 

flood event analysis, the mean and standard deviation of the 

normal distribution of GPS data for each grid was calculated 

during the week before the flood and the second week after the 

flood. This provides a mathematical description of the 

distribution of GPS data under normal conditions. The 

calculation formulas are as follows: 

Normal Distribution: 𝑓( 𝑧 ∣∣ 𝜇, 𝜎2 ) =
1

√2𝛱𝜎2
·  𝑒

−
（𝑧−𝜎）

2

2𝜎2  [8] 

Mean: 𝜇 =
∑ 𝑧𝑗

𝑁
𝑖=1

𝑁
  [9] 

Standard Deviation: :𝜎 = √
∑ (𝑧𝑖,𝑗−𝜇)2𝑁

𝑖=1

𝑁
  [10] 

𝑁 is the number of normal dates and 𝑧𝑖,𝑗  is the number of 

GPS per 𝑖 hour for the 𝑗th grid.  
The time ranges of the flood event analysis results were then 

totaled to get the amount of GPS data for each grid within this 

time range. The formula is as follows: 

𝑍𝑗 = ∑ 𝑍𝑖,𝑗
𝑏
𝑖=𝑎   (𝑎 ≤ 𝑖 ≤ 𝑏)  [11] 

𝑍𝑗 is the number of GPSs on the 𝑗th grid in the abnormal date 

within the flood time, a and b are the start and stop times of the 

flood obtained from the flood time analysis. 

Comparing the GPS data for each grid on abnormal dates with 

this range, if it falls outside the range, it is considered the time 

of flood occurrence. The calculation formula is as follows: 

{
𝜇 − 3𝜎 ≤ 𝑍𝑗 ≤ 𝜇 + 3𝜎

𝑍𝑗 < 𝜇 − 3𝜎, 𝑍𝑗 > 𝜇 + 3𝜎
  {

0
1
  [12] 

𝑍𝑗 is assigned a value of 0 if it is in the range and 1 if it is not 

in the range. 

For this analysis, refuge shelter data from government website 

were also downloaded, considering that during flood disasters, 

people seek refuge in designated shelters based on government 

notifications. We filtered shelters that were open from October 

12th to 14th, 2019, according to government statistical data, to 

facilitate a spatial analysis of the flood disaster. 

 

 

4. Result 

 

（1）Overall Variation 

Based on the data processing methods described above, GPS  

data variation charts for 12 time intervals were obtained, as 

shown in Figure 8. 
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Figure 8  2019/10/12-2019/10/14 GPS Data Variation Chart for Nagano City for 12 Time Intervals 

  

 

 



 

 

7 

 

Through the analysis of GPS data charts, it can be observed 

that, overall, the GPS data variation in the entire research area 

does not exhibit significant fluctuations. However, comparing 

the GPS data distribution images from 6:00 to 11:00 and from 

12:00 to 17:00 on the 12th, it is obvious that the GPS data in the 

circled portion of the data in the upper right corner of the data 

from 12:00 to 17:00 decreases, and that this decrease continues 

until the 14th, with the most obvious decrease on the 13th. 

Meanwhile, comparing the data from 17:00 to 23:00 on the 

12th, 13th and 14th, it can be seen that the amount of GPS data 

in the lower-right circle firstly decreases and then increases, 

which may indicate that this location was affected by the flood 

on the 12th and 13th, and recovered on the 14th.  

In conclusion, based on the GPS count statistics in Figure 6 

and the distribution of GPS counts in Figure 8, as well as the 

distribution of flood area in Figure 7, it can be seen that there 

were significant abnormalities in the GPS data in the research 

area during the flood, and at specific times with specific areas. 

The results indicate that the flooding occurred mainly on the 

12th and 13th day and there is a significant trend of decreasing 

GPS data in the area associated with the flooding. Therefore, the 

next temporal and spatial analyses of flood occurrence will focus 

on the 12th and 13th days. 

 

（2）Time Variation 

The overall analysis indicates that the occurrence of the flood 

was concentrated on October 12th and October 13th, both of 

which happened to be weekends. In light of this, the focus of the 

time variation analysis was directed towards the GPS data 

specifically collected during the weekends. 

The detailed results of the time variation analysis are 

presented in Table 4. In Figure 9, the range between " 𝜇 + 3𝜎 " 

and " 𝜇— 3𝜎 " represents the fluctuation range of GPS counts 

per hour during a typical weekend under normal circumstances. 

Notably, the GPS data from 16:00 to 18:30 on October 12th falls 

below the normal level, while the data from 22:30 to 24:00 on 

the same day and from 0:00 to 5:00 on the 13th significantly 

exceed the normal level. 

Referring to the precipitation graph in Figure 3, it can be seen 

that the precipitation in Nagano City during the time period from 

16:00 to 18:30 is exceptionally high at 38.5 millimeters, making 

it the most concentrated period of precipitation for the day. 

Therefore, it is speculated that the reduced GPS data during this 

period could be attributed to decreased population movement 

due to heavy rainfall. According to the normal trend depicted in 

Figure 9, as time progresses, especially on rainy days, the 

population's movement tends to decrease, resulting in a 

corresponding decrease in GPS data. However, it is noteworthy 

that during the time span from 22:30 on October 12th to 5:00 on 

the 13th, there is an abnormal increase in GPS data, particularly 

reaching a maximum difference exceeding 1000 at 1:00 in the 

morning. Concurrently, based on the river water level variation 

graph in Figure 3, the river water level rapidly increases from 

17:00 on the 12th and reaches its peak at 2:00 on the 13th, 

closely corresponding to the abnormal time and peak time of 

GPS data. It is reasonable to infer that a flood occurred during 

this period, accompanied by a significant population 

displacement in the early morning hours of the 13th. 

The subsequent spatial analysis of the flood will be conducted 

within this specific time frame. 

（3）Spatial Variation 

Based on the flood time analysis, the calculation of the grid 

results and abnormal distribution of GPS data during the flood 

period are shown in Figure 10. 

According to the results of the GPS grid data, there are a total 

of 175 grids with abnormal GPS data. Among them, 52 

abnormal grids are distributed individually, constituting 

approximately 30% of the total abnormal grids. The remaining 

123 grids are adjacent, making up about 70% of the total 

abnormal grids, primarily concentrated in the circled regions. 

As depicted in Figure 11, the overlay of flood extent, rivers, 

and shelters opened during the flood period reveals a noticeable 

correlation between adjacent abnormal grids and known flood 

areas, either adjoining or overlapping. Moreover, these regions 

are traversed by rivers. Particularly noteworthy is the 

concentration of abnormal grids near the flooded areas where 

shelters are located. This could be attributed to the fact that most 

people transitioning from flood-affected areas to shelters pass  

 
Figure 9 12th and 13th GPS data per hour with normal ranges 

 

Table4 Result of calculation of GPS data range per hour on 

normal date compared with 12th and 13th 

𝜇 + 3𝜎 𝜇 − 3𝜎 Hour 2019/10/12 Value 2019/10/13 Value 

6747.137 6045.363 0 6636 0 7774 1 

6479.969 5277.531 1 5963 0 7648 1 

6067.211 5134.289 2 5717 0 6928 1 

5695.492 5100.508 3 5319 0 6683 1 

5901.805 4776.695 4 5544 0 6727 1 

6511.829 5275.171 5 5965 0 6705 1 

7388.622 6520.378 6 7085 0 7088 0 

9687.441 6705.059 7 8471 0 8812 0 

10663.92 7643.083 8 9572 0 9849 0 

11071.79 8188.71 9 9340 0 9912 0 

10993.49 8363.007 10 9838 0 9975 0 

10703.37 8959.626 11 10250 0 9797 0 

11424.29 9034.213 12 9786 0 10489 0 

10758.33 9072.169 13 9421 0 10006 0 

10951.49 8941.512 14 9272 0 9902 0 

10975.53 9347.47 15 9852 0 9766 0 

11386.11 9626.895 16 9785 0 9666 0 

11287.76 9542.245 17 8973 1 9856 0 

10269.12 9127.883 18 8516 1 9556 0 

9458.922 8087.078 19 8542 0 8657 0 

8790.206 7498.294 20 8330 0 7803 0 

7971.024 7461.476 21 8507 1 7521 0 

7948.863 6894.137 22 8204 1 7531 0 

7376.843 6148.657 23 8366 1 6935 0 
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through positions connected to the flood edge and adjacent to 

shelters. It may also be due to the effects of transportation 

disruption, population evacuation, etc. caused by flooding. This 

all illustrates the close association between the distribution 

characteristics of abnormal GPS data and flood events. Spatial 

analysis and visualization play a significant role in clearly 

identifying the areas affected by the flood. 

 

 

5. Discussion 

 

(1) Advantages 

This study demonstrates that by solely relying on the 

detection of abnormal changes in GPS data, it is possible to 

accurately determine the time and area of flood disasters. 

Compared to the use of satellite and drone data, GPS data 

acquisition is more convenient in terms of time and area, 

enabling rapid and precise detection of disaster occurrences. 

Furthermore, GPS data can also detect the overall movement 

direction of populations during natural disasters, which provides 

valuable assistance in population evacuation and rescue efforts. 

Additionally, the findings of this study can offer valuable 

guidance for urban planning and development.  

 

(2) Limitations 

The GPS data used in this study was sourced from a single 

company and does not cover every single person within Nagano 

City, so there are limitations in the amount of data and data 

accuracy; these limitations prevent accurate measurement of 

population change and restrict calculations using smaller grid 

sizes. This is because the time interval was initially set to 6 hours 

in order to determine the date of the flooding event, which can 

be relatively large and may have an impact on the accuracy of 

the results. Furthermore, this study relied on GPS location data 

from mobile phones, overlooking situations where populations 

may be unable to move during major natural disasters. By using 

the normal distribution model, it is possible to quantitatively 

determine outliers within a statistical framework, which 

provides a basis for accurate localization of outliers. However, 

we also need to be aware of the limitations as the actual 

distribution of the data may not strictly follow the normal 

distribution. 

 

(3) Conclusion 

In this study, a comprehensive analysis of GPS data during 

flood events successfully determined the timing and affected 

flood area. Spatial analysis and visualization techniques were 

employed to describe the distribution of abnormal GPS data 

during the flood time. The GPS data predominantly concentrated 

near rivers, adjacent to flood-prone regions, indicating a close 

correlation between GPS data abnormal and flood events. 

The significance of this study lies in emphasizing the potential 

value of GPS data in monitoring and analyzing flood events. Our 

study not only provides methodologies for understanding the 

association between GPS data and floods but also lays the 

groundwork for future similar studies. 

Future study endeavors could delve deeper into the causal 

relationships between GPS data and flood events, refine models 

for enhanced predictive accuracy, and consider the influence of 

 
Figure 10 Results and distribution of abnormal grids 

 

 
Figure 11 Overlay analysis of abnormal grids 

 

other environmental factors on GPS data. In disaster 

preparedness, it is crucial to fully leverage GPS data, integrating 

it with other data sources and scientific methods to enhance 

urban resilience against natural disasters. The establishment of a 

more intelligent and efficient disaster management system will 

contribute to providing residents with safer and more reliable 

living conditions. 
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