建物設計用垂直積雪量と降雨量の分布に関する考察
 Study on Distributions of Snow Depth for Structural Design and Rainfall Amount

○荻野和臣 ${ }^{1}$ ，曽根孝行 ${ }^{1}$ ，山本雅史 ${ }^{1}$ Kazuomi OGINO ${ }^{1}$ ，Takayuki SONE ${ }^{1}$ and Masashi YAMAMOTO ${ }^{1}$
${ }^{1}$（株）竹中工務店 技術研究所
Takenaka Corporation，Research \＆Development Institute

Abstract

In February 2014，a heavy snow fell in the Kanto－Koshin area and the Tohoku area，and damaged many building structures including gymnasiums，whose roofs were collapsed．The Ministry of Land，Infrastructure，Transport and Tourism reported that the weight of snow on roof was increased by rainfall to be larger than the design load．To observe the influence of rainfall on snow，we proposed an index of rainfall amount per regulated snow load．First，we calculated the regulated snow load by the current Japanese building standard law，and plotted its distribution map for 6 prefectures，Chiba，Saitama，Tokyo，Kanagawa，Yamanashi and Shizuoka．Second，we estimated the rainfall amount by using precipitation data and averaged temperature data which were provided by Japan Meteorological Agency as the monthly normal data for every square kilometer．Finally，we derived the distribution map of the proposed index，in which the area where the snow load should be increased was indicated as a high value．

Keywords ：Snow Load，Unit Weight of Snow，Snow Depth for Structural Design，Rainfall Amount，Distribution Map

1．はじめに

2014年2月14日夜から15日にかけ，関東甲信地方及 び東北地方は記録的な大雪に見舞われた。この大雪によ り各地で建築物に被害が発生し，住家被害は679 棟（全壊 16 棟，半壊 46 棟，一部破損 585 棟，その他 32 棟），非住家被害は 388 棟（公共建物 40 棟，その他 348 棟）に及んだ ${ }^{1)}$ 。体育館等，公共性の高い建物の屋根が崩壊す る事例もあり，建築関係者のみならず社会全体からも注目を集めた。

今回の大雪による建築物被害の原因調査が国土交通省 により行われている ${ }^{2)}$ 。この調查によって，被害が多か った地域は多雪区域以外の地域であったこと，以下の 2 つの条件を同時に満たした地域を中心に被害が分布して いたこと，などが判明している。
（1） 2 月 14 日～15 日の期間における最大垂直積雪量（以下，最深積雪）が垂直積雪量の 50 年再現期待値（建築基準法で定められた垂直積雪量）を超えた地域
（2）最深積雪に対して当該期間における降水量が相対的に多かった地域（屋根に堆積した雪が雨を含み，積雪の みによる荷重よりも大きな荷重が作用した地域）

調査報告書の提言には，今回の大雪も含めた観測記録 に基づく垂直積雪量の再現期待値の検討や，降雪や降雨 の観測記録の蓄積などを踏まえたより推計精度の高い積雪の単位荷重に関する検討などを今後実施すべきとまと められている。

現在，建物基準法では，積雪荷重に関して垂直積雪量 と積雪の単位荷重の値を定めている。積雪の単位荷重は多雪区域を除いて全国一律の値であり，降雨が重なるこ とによる割増などについての明確な定めはない。

降雨が重なることを考慮した積雪荷重の考え方につい て，前述の調査報告書 ${ }^{2)}$ では海外の事例を紹介している。

米国土木学会基準（ASCE7）では，積雪荷重が一定以下の地域における緩傾斜屋根において，積雪に降雨が重なっ た場合を想定した荷重割増を行うこととしている。この考え方は ISO の規格（IS04355）にも引用されている。カ ナダの建築基準においては最も厳しい荷重はしばしば積雪が雨を含んだ状態で発生するとされており，降雨によ る荷重割増の目安が示されている。
我が国でも日本建築学会の指針 ${ }^{3)}$ において，積雪荷重 の増加成分を降水量から算定する方法が提案されている。 しかし，積雪量の多い地点を対象とした既往の研究に基 づく方法であるため，今回の大雪で被害を被った関東地方などにおける降雨の影響を評価できるものであるとは言い難い。
今回の大雪を踏まえ，関東地方周辺においても降雨の影響を考慮した積雪荷重に関する研究が進むものと思わ れるが，学会指針や建築基準法に反映されるまでには観測や検討のため，まだ時間を要すると考えられる。この様な中，筆者らは，現状利用できる統計データを用い，設計用積雪荷重に対する降雨の影響について概観できな いかと考えた。
本論文では，降雨の影響を把握するための指標として，設計用垂直積雪量に対する降雨量の比率を用いた。設計用垂直積雪量については現行の建築基準法における算定方法に関して概要を示すとともに千葉，埼玉，東京，神奈川，山梨，静岡の 1 都 5 県（以下，検討地域）を対象 に設計用垂直積雪量の分布図を作成した。降雨量につい ては，気象庁が観測した降水量には降雪分の水量が含ま れるため，気温と降雨率の関係から降雨量の推定を試み た。

2．建物基準法における積雪荷重の概要

建築物の構造設計に用いる積雪荷重は，50 年再現期待値を想定した値である。その算定方法は建築基準法施行

令 86 条（以下，令 86 条），及び告示平 12 建告第 1455号（以下，建告第 1455 号）で定められている。令 86 条第1項で「積雪荷重は，積雪の単位荷重に屋根の水平投影面積及びその地方における垂直積雪量を乗じて計算し なければならない。」とし，第2項と第3項に積雪の単位荷重と垂直積雪量の具体的な説明が記されている。

2． 1 積雪の単位荷重

令 86 条第 2 項で，「積雪の単位荷重は，積雪量 1 セン チメートルごとに 1 平米メートルにつき 20 ニュートン以上としなければならない。ただし，特定行政庁は，規則 で，国土交通大臣が定める基準に基づいて多雪区域を指定し，その区域につきこれと異なる定めをすることがで きる。」と定めている。

2． 2 垂直積雪量

令 86 条第 3 項で，「垂直積雪量は，国土交通大臣が定 める基準に基づいて特定行政庁が規則で定める数値とし なければならない。」と定めている。この数値は建築基準法施行細則で定められている。例として，検討地域に おいて定められた数値を付表 $1 \sim 6$ に示す。建告第 1455号で定められた垂直積雪量の算定式（以下，告示式）に よる値との比較により数値が規定されるが，この規定方法は地域によって，以下の 4 つに大別される。
（1）告示式による値を規定するもの
（2）告示式による値によらず，一定値を規定するもの
（3）一定値を定めるが，条件によって告示式による値を規定するもの
（4）一定値を定めるが，告示式による値が下回る場合は，告示式の値を使用できるとしたもの

なお，告示式は次式の通りである。

$$
\begin{equation*}
d=\alpha \cdot l s+\beta \cdot r s+\gamma \tag{1}
\end{equation*}
$$

ここで，
d ：垂直積雪量（m）
α, β, γ ：区域に応じて別表の当該各欄に掲げる数値
$l s \quad$ ：区域の標準的な標高（m）
$r s$ ：区域の標準的な海率（区域に応じて別表の R の欄に揚げる半径（km）の円の面積に対する当該円内の海その他これらに類するものの面積の割合）

上記，別表に掲げるとされる数値の例として，表1に検討地域における値を示す。

図 1 に告示式から算定した垂直積雪量の分布図を示す。表示の都合上，山梨県西端までを図の表示範囲としてい る。標高と海率の計算には，標高の 50 m メッシュデータ 4）を用いて，日本測地系 2000 （JGD2000）で計算を行っ ている。図の東側一帯は 30 cm 末満の地域となっている。標高の高い西側は，垂直積雪量に標高の影響が強く現れ た結果となっている。

告示式による数値と付表1～6から，特定行政庁が定め る垂直積雪量の分布図を作成し図 2 に示す。なお本図に おいて，（4）の規定方法を採る地域では，付表に定められ

た一定値を採用している。付表3に下線で示した地域で は，同市町内では区域の違いによらず，定められた一定値と告示式による値の内，最も大きな値を全ての区域に採用している。付表4～6の地域では，同市町内では区域 の違いによらず，最も小さい値を全ての区域に採用して いる。

表1 建告第1455号別表の値の一例

区域	α	β	γ	R
千葉県，埼玉県， 東京都，静岡県， 神奈川県 山梨県 0.0005	-0.06	0.28	40	

図1 告示式による垂直積雪量

図2 特定行政庁の定める垂直積雪量

3．降雨量の平年値と垂直積雪量の比較

気象庁は，降水量など各種気象データのメッシュ平年値図とそのデータを公開している ${ }^{5)}$ ，6）。メッシュ平年値図とは，156 地点の気象台•測候所等と約 1， 100 地点の アメダスの観測データから算出した統計期間 30 年（現在 の値は 1981～2010 年が対象期間）の平年値を元にして，日本全国の平年値を 1 km メッシュで推定した分布図であ

る。気象データに対する地形や都市の影響を客観的に把握するために有用なものとされている。本論文では，各月のメッシュ平年値図を利用する。

アメダスの降水量の値には，雨量計が融かした降雪時 の雪の水量が含まれている。降雨の影響を考える際，降雪分の水量を除いた降雨量が必要となる。しかし，大半 のアメダス観測地点では降雪情報を観測していないため，本論文では，次の様に降雨量の推定を試みた。

気温が低くなる程上空の雨は雪に変わりやすく，降水量に占める降雨量の割合（以下，降雨率）は低くなる。 この様に降雨率は気温に強く依存すると考え，気温の関数として降雨率が表せれば降雨量を推定することが可能 となる。

検討地域の中で降雪が多く観測されている河口湖特別地域気象観測所を代表地点とし，平年値と同様の対象期間である 1981～2010年の各月の気象データ 7）を用いて気温と降雨率との関係を調査した。降雨量は雪水比の値 を 2.0 とし，合計降雪量を水量換算することで評価した。各月の平均気温と降雨率の関係を図 3 に示す。図中に両者の関係を示す推定式を記した。本図から各月の日平均気温が $3^{\circ} \mathrm{C}$ 程度を超えるとその月はほぼ雨であり，それ を下回ると徐々に雪である場合が増えることがわかる。

推定式に各月の日平均気温の平年値を代入することで，地域毎の推定降雨率を求めた。図4に，2月（2014年の大雪を念頭に 2 月とした）の合計降水量の平年値に推定降雨率を掛けて推定した月合計降雨量のメッシュ平年値図を示す。埼玉県西部と山梨県北部は降雨が発生し難く千葉県勝浦市や神奈川県小田原市，静岡県伊豆市，静岡県静岡市葵区などの各地周辺では降雨が発生しやすいと いう評価になった。

検討地域においては，設計に用いる積雪の単位荷重が一律の値であることから，設計用積雪荷重の大きさは設計用垂直積雪量に依存する。設計用積雪荷重を表す設計用垂直積雪量と，降雨の発生しやすさを表す降雨量の平年値との相対的な関係を捉えることで，地域による降雨 の影響の違いを把握することができると考えた。図2の設計用垂直積雪量に対する図4の降雨量の平年値の比率 を算出し，その分布図を図 5 に示す。千葉，神奈川，静岡など南部において指標の値が相対的に大きい。本指標 は設計用垂直積雪量の雪が建物に積もった状態での雨に よる影響度（危険度）を示すものであり，これらの地域 では，降雨の影響を考慮すれば積雪の単位荷重を従来の値に比べて大きく設定するなどの必要性が示唆される。

4．まとめ

2014年2月にかけて発生した大雪について，最深積雪 に対し当該期間における降水量が相対的に多くなったこ とが被害拡大の一因であったとする報告を受け，積雪荷重に対する降雨の影響について検討を行った。

千葉，埼玉，東京，神奈川，山梨，静岡の 1 都 5 県を検討地域とし，建物の設計用垂直積雪量の分布図を作成 した。筆者らの知る限り建築基準法が定める垂直積雪量 の地域分布を図化した例はないことから，本分布図は設計者が概括的な検討を行う上で有用である。また，日平均気温と降雨率との関係を用い，降雨量の推定を試みた。積雪荷重に対する降雨の影響を表す指標として，設計用垂直積雪量に対する降雨量の平年値の比率を求めた。指標の値が相対的に大きな地域は，設計用垂直積雪量の雪

が建物に積もつている時，降雨の影響を受けやすい地域 と考えられ，積雪の単位荷重を従来に比べ大きく設定す るなどの必要性が示唆される。

図3 河口湖特別地域気象観測所における各月の日平均気温と降雨率の関係

図4 2月の合計降雨量の推定平年値

図5 設計用垂直積雪量に対する 2 月の合計降雨量の推定平年値の比率

付録

千葉，埼玉，東京，神奈川，山梨，静岡の1都5県に おける特定行政庁の例規集を WEB 上で調査し（2015／4／24 アクセス），建築基準法施行細則に記載された垂直積雪量を各市町村別にまとめた（付表 1～付表6）。

付表1 千葉県における垂直積雪量

	地域
全域	内容

付表2 埼玉県における垂直積雪量

地域	内容
さいたま市，川越市，川口市，春日部市，上尾市，草加市，越谷市，朝霞市，志木市，和光市	30 cm 。
その他	30 cm 。ただし，告示式による数值が 30 cm を超える場合は，当該数值。
狭山市	32 cm 。

付表3 東京都における垂直積雪量

地域	内容
中央区，新宿区，台東区，墨田区，江東区，豊島区，葛飾区，江戸川区，調布市	30 cm 。
千代田区，港区，文京区，品川区，目黑区，大田区，世田谷区，渋谷区，中野区，杉並区，北区，荒川区，板橋区，練馬区，足立区，武蔵野市，三䳸市，小金井市，狛江市，清瀬市，東久留米市，西東京市，大島町，利島村，新島村，神津島村，三宅村，御藏島村，八丈町，青ケ島村，小等原村	30 cm 。ただし，告示式による数值が 30 cm末満の場合は，当該数值でも可。
町田市（その他の区域）	$33 \mathrm{~cm}_{\mathrm{o}}$ ただし，告示式による数值が 33 cm末満の場合は，当該数値でも可。
立川市，府中市，昭島市，小平市，東村山市，国分寺市，国立市，福生市，東大和市，武蔵村山市，多摩市，稲城市，羽村市，瑞橞町	35 cm 。ただし，告示式による数值が 35 cm末満の場合は，当該数值でも可。
八王子市，青梅市，あきる野市及び旦の出町のうち，都市計画法第 7 条第 1 項に規定する市街化区域の区域，日野市	40 cm 。ただし，告示式による数值が 40 cm末满の場合は，当該数値でも可。
八王子市，青梅市，あきる野市及び日の出町のうち，都市計画法第 7 条第 1 項に規定する市街化区域の区域以外の区域，町田市（常盤町，上小山田町，下小山田町，小山田桜台，相原町，小山町，小山ヶ丘），檜原村，奥多摩町	告示式による数値。

付表4 神奈川県における垂直積雪量

地域	内容
藤沢市，茅ケ崎市，逗子市，三浦市，大和市，伊塋原市，海老名市，座間市，南足柄市，綾瀬市，葉山町，寒川町，大磯町，二宮町，中井町，大井町，開成町，真鶴町，湯河原町	30 cm 。
川崎市	30 cm 。ただし，告示式による数値でも可。
横浜市	30 cm 。ただし，告示式による数值が 30 cm 末満の場合は，当該数值。
平塚市	30 cm 。ただし，告示式による数值が 30 cm 末満の場合は，当該数值でも可。
厚木市	30 cm 。ただし，局地的地形要因による影響等により これにより難い場合にあっては，別に市長が定める ところにより求めた数値。
小田原市	30 cm 。ただし，告示式による数值が 30 cm 末満の場合は，当該数值でも可。標高 70 メートルを超える地点については，告示式による数值。
横須賀市	30 cm 。ただし，標高 100 メートルを超える地点につ いては，告示式による数値。
鎌倉市	33 cm 。ただし，告示式による数值が 33 cm 末满の場合は，当該数値でも可。
秦野市	35 cm 以上。ただし，告示式による数值以上でも可。丹沢大山国定公園区域内は告示式による数値以上。
相模原市（その他の区域）	35 cm 。ただし，告示式による数值が 40 cm 末满の場合は，当該数值でも可。
松田町，山北町，愛川町，清川村	40 cm 。
相模原市（編入前の城山町，津久井町，相模湖町及び藤野町の区域）	40 cm 。ただし，告示式による数值が 40 cm 末満の場合は，当該数值でも可。
箱根町	45 cm 。

付表5 山梨県における垂直積雪量

地域	内容
笛吹市（旧石和町の区域に限る。），中央市（旧豊富村の区域を除く），身延町（旧身延町の区域に限る），南部町，昭和町	50 cm 以上。
甲府市（その他の区域）	50 cm 以上。ただし，告示式による数値 が 50 cm を超える場合は，当該数值。
山梨市（旧三富村の区域を除く），菲崎市，南アルプス市（旧芦安村の区域を除く），甲斐市，笛吹市（旧石和町の区域及び旧当川村の区域を除く），上野原市（旧秋山村の区域を除く。），甲州市（旧大和村の区域を除く），中央市（旧豊富村の区域に限る。），市川三紈町，身延町（旧身延町の区域及び中之倉トンネル以東 の区域を除く），富士川町	55 cm 以上。
甲府市（右左口町，心経寺町，中畑町，上向山町，下向山町，白井町，上曽根町，下曽根町）	55 cm 以上。ただし，告示式による数值 が 55 cm を超える場合は，当該数値。
山梨市（旧三富村の区域に限る），早川町	60 cm 以上。
甲府市（梯町，古関町）	60 cm 以上。ただし，告示式による数値 が 60 cm を超える場合は，当該数值。
大月市，北杜市（旧明野村の区域に限る），上野原市（旧秋山村 の区域に限る），甲州市（旧大和村の区域に限る）	65 cm 以上。
甲府市（黒平町，竹日向町，高成町，川寉町，御岳町，高町， 猪狩町，草鹿沢町，塔岩町）	65 cm 以上。ただし，告示式による数値 が 65 cm を超える場合は，当該数値。
北杜市（旧須玉町の区域に限る），小菅村，丹波山村	70 cm 以上。
都留市，南アルブス市（旧芦安村の区域に限る），北杜市（旧武川村の区域に限る），笛吹市（旧芦川村の区域に限る），西桂町	75 cm 以上。
富士吉田市，北杜市（旧明野村，旧須玉町及び旧武川村の区域並びに旧小淵沢町の区域を除く），身延町（中之倉トンネル以東 の区域に限る），忍野村，鳴沢村，富士河口湖町	80 cm 以上。
北杜市（旧小淵沢町の区域に限る），道志村	85 cm 以上。
山中湖村	95 cm 以上。

付表6 静岡県における垂直積雪量

地域	内容
伊東市，下田市，御前崎市（旧浜岡町の区域に限る），牧之原市（旧相良町の区域に限る），東伊豆町，河津町，南伊豆町，松崎町，西伊豆町	25 cm 以上。ただし，告示式による数值でも可。
静岡市（都市計画区域），浜松市（その他の地区），沼津市，熱海市，三島市，島田市（旧島田市の区域 に限る。），富士市，磐田市，旡津市，撕川市，藤枝市，袋井市，湖西市，伊豆市（旧修善寺町及び旧土肥町の区域に限る），御前崎市（旧浜岡町の区域を除 く），菊川市，伊豆の国市，牧之原市（旧相良町の区域を除く），函南町，清水町，長泉町，吉田町，森町	30 cm 以上。ただし，告示式による数值でも可。
浜松市（旧春野地域自治区，旧佐久間地域自治区及 び旧龍山地域自治区），富士宫市，裙野市，伊豆市（旧修善寺町及び旧土肥町の区域を除く）	35 cm 以上。ただし，告示式による数值でも可。
静岡市（その他の地区），島田市（旧島田市の区域を除く），川根本町（旧中川根町の区域に限る）	40 cm 以上。ただし，告示式による数值でも可。
浜松市（旧水寉地域自治区），小山町，川根本町（旧中川根町の区域を除く）	45 cm 以上。ただし，告示式による数値でも可。
静岡市（口坂本，井川，岩崎，上坂本，田代，小河内，入島，梅ヶ島に限る），御殿場市	55 cm 以上。ただし，告示式による数值でも可。

参考文献

1）消防庁応急対策室：平成 26 年 2 月 14 日から 16 日の大雪 による被害状況等について（最終報），2014．6
2）国土交通省：建築物の雪害対策について報告書，2014． 10
3）日本建築学会：建築物荷重指針•同解説，2015
4）国土地理院：数値地図 50 m メッシュ（標高）第 4 刷（CD－ ROM）， 2001.5

5）気象庁：メッシュ平年値図，〈http：／／www．data．jma．go．jp／ obd／stats／etrn／view／atlas．html＞，（2015／4／30アクセス）
6）国土交通省：国土数値情報ダウンロードサービス，平年値 メッシュ第 2.1 版，識別子 G02，平成 24 年度作成データ，〈http：／／n1ftp．mlit．go．jp／gml／datalist／KsjTmp1t－G02． html＞，（2015／4／30 アクセス）
7）気象庁：過去の気象データ検索，〈http：／／www．data．jma．go． jp／obd／stats／etrn／index．php＞，（2015／4／30アクセス）

