高密度微動観測結果による地盤の卓越周期と未固結層厚の関係

Relationship between Thickness of Alluvium and Predominant Period Based on High Density Microtremor Observations.

○栗山 利男¹, 上野 直洋², 松田 磐余³, 山本 俊雄⁴, 荏本 孝久⁴ Toshio KURIYAMA¹, Naohiro UENO², Iware MATSUDA³, Toshio YAMAMOTO⁴ and Takahisa ENOMOTO⁴

1構造計画研究所防災ソリューション部

Department of Disaster Prevention Solution, Kozo Keikaku Engineering Inc.

2神奈川大学大学院工学研究科

Engineering Course of Graduate School, Kanagawa University

3 関東学院大学名誉教授

Emeritus Professor, Kanto Gakuin University

4神奈川大学工学部

Faculty of Engineeering, Kanagawa University

H/V spectral ratios of microtremors were obtained in the Yokohama City.Relationship between their predominant periods and the total thickness of the latest Pleistcene and Holocene deposits was explained by the equation Y=A*X+B. X and Y mean the total thickness and the predominant period, respectively. The values of A and B as well as the correlation coefficients reflect historical development of landforms and soils. This result brings us that more effective use of microtremor observations is possible for seismic microzoning.

Keywords : Microtremor observation, Predominant Period, Unconsolidated Soi, H/V spectrum

1. はじめに

各種構造物の地震被害の原因分析や地震被害予測を行 うには、対象地点の表層地盤の地震動特性(卓越周期) を把握することが重要となる。表層地盤の卓越周期は、 ボーリング調査や PS 検層などから、対象地点の地盤構 造(せん断波速度構造)を推定することによって算定す ることができるが、これらの地盤調査には、相応の期間 とコストを要する。一方、簡易的に地盤の卓越周期を算 定する方法として、常時微動観測に基づく H/V スペクト ルを利用する方法がある。一般に、表面波成分が優勢で あり特に比較的軟弱な堆積層が堆積する地盤構造におい ては、H/V スペクトルにより地盤固有の卓越周期を推定 することが可能であるとされている。筆者らは、これま でに常時微動観測に基づき地盤震動特性を把握しサイス ミック・マイクロゾーニングに活用することを検討して きた。都市に普遍的に存在する構造物を対象とするサイ スミック・マイクロゾーニングでは、いわゆる工学的基 盤上の堆積物が対象となる。これらの堆積物は、丘陵地、 台地、低地の地形を構成している。これらの地形の形成 史は、気候変動とそれに伴う氷河性海面変動による海面 高度の昇降、地殻変動による隆起と沈降の影響を強く受 けている。すなわち、これらの外的条件に地形を造って きた河川がどう反応したかにより地盤条件は異なる。

本研究では、横浜市を対象に実施してきた高密度微動 観測結果に基づき地盤の卓越周期を算定し、その分布に ついて検討を行うとともに、低地および台地を対象とし て、それぞれの地域の地形の成り立ちを考慮して地形区 分を行い、地形ごとに沖積層厚あるいは未固結層厚と常 時微動観測から求まる卓越周期との関係を整理した。

2. 横浜市の地形・地質と高密度微動観測 (1)地形・地質概要

図1に横浜市の地形・地質図を示す。横浜市は、丘陵 地と台地が市域全体の約7割を占め、残りの3割が河川 に沿った沖積低地と臨海部の埋立地から成っている。丘 陵地は市域中央部よりやや西に分布し、市域を南北に縦 断する。北側の丘陵地は多摩丘陵の南端に位置し、南側 の丘陵地は三浦半島に続く三浦丘陵の北端に位置してい る。台地・段丘は丘陵地の東西にある。東側の台地は下 末吉台地と呼ばれ、西側の台地は相模野台地の東端にあ たる。これらの丘陵地と台地は浸食が進み、谷の地形は 樹枝状に広がり起伏に富んだ地形をしている。河川及び その支流は下方浸食と側方浸食が進み、上総層群を刻み 込んで層の厚い沖積層が形成されている。地質は上総層 群が横浜市の基盤を形成しており、相模層群が不整合に 覆い丘陵地と台地を形成している。低地には丘陵地や台 地を刻む河川の谷底低地と沿岸部の海岸低地とがある。 沿岸部には軟弱地盤地域が広がり、その層厚は深い地域 で 40~50m程度に達している。また、海岸部には埋立 地が造成され海岸線はほとんどが人工化されている。

(2) 高密度微動観測

高密度微動観測は、横浜市の詳細な地盤震動特性を明 らかにすることを目的として、平成 17 年度から神奈川 大学荏本研究室において順次実施してきた。観測点は横 浜市全域を 250m メッシュで区切り、その中心付近とし、 地理的な条件などにより観測不可能な地点を除いた約 6500 地点とした。また、常時微動観測はサーボ型速度計 を用いて、サンプリング周波数 100Hz、観測時間 180 秒 とした。

3. 地盤の卓越周期

(1) 卓越周期の分布

図2にH/Vスペクトルから判読した卓越周期を示す。 西部から東部にかけて、卓越周期が長くなる傾向が認め られる。この傾向は横浜市の地形地質の特徴である台 地・丘陵地を開折して流れる河川の流域に沿って顕著で ある。鶴見川、帷子川などの代表的な河川流域の地域に ついてみると、台地・丘陵地側(河川上流側)では卓越 周期は短く、下流になるにつれて長くなる。一方、横浜 市南西部においては内陸部においても卓越周期が長い地 域が見られる。これは、台地・丘陵地の表面にローム層 が厚く堆積していることによると考えられる。

(2)H/V スペクトルの分類

H/V スペクトルについて表 1 に示すように、明瞭なピー クが一つだけ認められる場合(Type-1:容易に卓越周期 が判読可能)、2 つ以上多数のピークが認められる場合

(Type-2:専門的知見に基づき卓越周期の判断が必要)、 ピークが認められない場合(Type-3:卓越周期は判読不 可能)に区分した。表1にタイプ別の観測点数を示す。 表1よりH/Vスペクトルから容易に卓越周期が求められ る地点は1670点(約26%)、ピークが2つ以上あるが 専門的知見(対象地点および周辺のボーリング柱状図、 地形・地質情報など)から卓越周期が推定可能な地点が 4476点(約69%)であり、H/Vスペクトルからは卓越周 期は判読不可能な地点は318点(約5%)であった。

(3) 地形分類との対応

図 3 に Type-1 と Type-2 の分布図を示す。図 3 より Type-2 が支配的な地域については局所的に認められるが、 Type-1 が支配的な地域は特定できない。横浜市の地形を 表 2 に示すように丘陵地、台地、低地に分類し、Type-1 となる観測点の比率を求めた。その結果、Type-1 となる 観測点が比較的多いのは丘陵地 1 (39%)、台地 1 (45%)となった。一方、丘陵地 3 では Type-1となる地 点は 9%とほとんどなく、台地 3 でも 28%である。よっ て、単に丘陵地、台地といった地形分類と H/V スペクト ルの Type には対応関係は認められない。

図2 H/Vスペクトルから判読した卓越周期

表1 H/Vスペクトルのタイ	イプ
----------------	----

H/Vスペクトルのタイプ		観測点数	比率
\wedge	Type-1 卓越周期が容易に判読可能	1670	26%
\sim	Type-2 専門的知見に基づき判読可能	4476	69%
	Type-3 判読不可能	318	5%
	合計	6464	

表2 地形とType-1となる観測点数

地形	構成層	観測点数	Type1	比率
丘陵地1	土屋・土橋ローム層、戸塚・ 寺尾層、早田・舞岡ローム 層、鶴見・舞岡層	241	94	39%
丘陵地2	多摩2ローム層、おしぬま砂 礫層、山王台砂丘、山王台 ローム層、上倉田層	704	203	29%
丘陵地3	屏風ヶ浦層、長沼層	227	21	9%
丘陵地4	上総層群	1232	207	17%
台地1	立川ローム層、立川礫層	31	14	45%
台地2	武蔵野ローム層上部・中部・ 下部、中台段丘礫層、武蔵 野礫層、小原台砂礫層	581	196	34%
台地3	下末吉ローム層、下末吉層	816	227	28%
低地	低地	2314	708	31%
	合計	6146	1670	27%

図3 H/VスペクトルのType別分布

4. 卓越周期と表層地盤の関係

(1) 検討方法

都市に普遍的に存在する低層・中層の建物の地震被害 に重要となる2秒程度以下の周期帯を対象とした場合、 地盤の卓越周期は表層部の堆積物の性質(主に岩相と硬 さ)と厚さに依存すると考えられる。そこで、常時微動 観測に基づくの卓越周期をY(秒)、沖積層厚をX (m)として、

 $Y = AX + B \qquad \cdot \cdot \cdot \cdot (1)$

の回帰式で、両者を関係付ける。A の値は沖積層 1m あ たりの卓越周期への寄与率を示し、沖積層の S 波速度に 逆比例する。また、B=0 ならば沖積層の平均 S 波速度は 4/A になる。B は沖積層よりも下位の堆積物の卓越周期 の寄与率を示す。また R は相関係数を表す。基盤は、N 値 50 以上の固結シルトもしくは固結砂層とし、その上 を覆う堆積物を沖積層とする。なお、沖積層厚について は、横浜市が行なったボーリング調査のデータを参考に した。

(2)低地の沖積層厚と卓越周期

本研究では、図1に示す鶴見川低地、金沢低地、大岡 川低地、帷子川低地を対象とした。なお、鶴見川低地に ついては、堆積物の特徴から上流部・中流部・下流部に 区分した。各低地の沖積層厚と卓越周期の関係を図4に 示し、回帰式の係数A,Bの値、平均せん断波速度速度、 相関係数を表3に示す。図4より帷子川低地、大岡川低 地、鶴見川低地上流部の回帰式の傾きは他の低地よりも 大きく(係数Aが大)、卓越周期は沖積層厚に大きく依 存している。また、帷子川低地と大岡川低地の回帰式の 係数は A、B ともにほぼ同じ値となっている。これは図 5 に示すように両者の堆積物、堆積年代が同じ構成をし ていることによる。どちらも下末吉台地を侵食している 小河川の谷底低地であり、小河川であるので堆積物は粘 土・シルトからなる。また、各下流部は縄文海進時(約 1 万~5500 年前)に入り江となり軟弱な堆積物が形成さ れた。

鶴見川低地上流部は係数 A が最も大きくなった。これ は N 値の極めて小さい有機質土の堆積によるものと考え られる。鶴見川低地上流部は、中流部・下流部にくらべ 海面の昇降・沈降の影響をあまり受けておらず、シルト や砂層の上に有機質土が堆積している。

鶴見川中流部、下流部、金沢低地については係数 Bが それぞれ異なるものの、係数 Aについてはほぼ同じ値と なった。図 6に古多摩川谷沿いの地質断面図を示す。図 6の下流側が鶴見川低地下流部に該当する。また、図 7 に金沢低地の地質断面図を示す。これらの地域では、沖 積層の層構造や堆積年代が近く、鶴見川低地下流部と金 沢低地は、最終氷期極相期(約2~1.8万年前)に河川が 形成した深い谷の上に沖積層が堆積し形成された地形で ある。

図4 低地の沖積層厚と卓越周期の関係

表3 低地の係数

	А	В	平均 Vs	R
鶴見川低地中流部	0.0153	0.3614	261.4	0.66
鶴見川低地下流部	0.0159	0.1555	251.6	0.80
金沢低地	0.0184	0.1937	217.4	0.82
大岡川低地	0.0291	0.1158	137.5	0.92
帷子川低地	0.0291	0.1079	137.5	0.93
鶴見川低地上流部	0.036	0.0272	111.1	0.83

図5 帷子川低地と大岡川低地の地質縦断図

表4 台地の回帰式の係る	数
--------------	---

	А	В	平均 Vs	R
下末吉台地	0.0049	0.275	784.3	0.49
相模野台地	0.0058	0.1981	689.7	0.46

(3) 台地の未固結層厚と卓越周期

本研究では、下末吉台地と相模野台地を対象とした。 台地の未固結層厚と卓越周期の関係を図 8 に、回帰式の 係数、平均せん断波速度、相関係数を表 4 に示す。なお、 台地には沖積層は分布していないので、下末吉台地では 関東ローム層と海成層、相模野台地では関東ローム層を 未固結層として検討を行なった。

まず、台地では回帰係数 A の値が低地より小さく、相 関係数も小さくなっている。これは、台地の表層部の堆 積物が沖積低地の堆積物よりも固結が進んでいることと 調和し、台地の卓越周期は表層部の堆積層厚に低地ほど 大きくは依存しないことを表している。 下末吉台地は、最終間氷期(12~13万年前)に浅い海 底であったところが隆起して台地となった。台地を構成 している堆積物は海成の砂やシルトを主体としている。 一方、相模野台地は約1~8万年前に気候変化や相模川 の流路変遷に伴い、下刻と埋積が何度も繰り返され数段 の河成段丘より成っている。そしてどちらの台地も表層 は厚さ5~15mほどの関東ローム層に覆われ、関東ロー ム層以下の堆積物は下末吉大地に海成層、相模野台地に 礫層が堆積している。下末吉台地、相模野台地ともに係 数Aの値は同様の値となり、卓越周期は0.2~0.5秒の範 囲内で分布しており、相関係数は小さい。両台地ともに 係数Aが小さく、係数Bが大きくなっているのは、ロー ム層が低地の沖積層よりも硬いこととと、それぞれの台 地を構成する関東ローム層以深の構成層の影響が大きい ためと考えられる。

5. まとめ

本研究で得られた知見を以下にまとめる。

1)H/V スペクトルから求めた横浜市の地盤の卓越周期の 分布は、横浜市の地形・地質および地盤の性状に起因す る分布傾向を示し、西部の台地・丘陵地から東部の低地 に至る地形・地質の変化と河川の堆積地盤環境と卓越周 期は整合することが認められた。

2)H/V スペクトルを用いて地盤の卓越周期を容易に推定 することができる地点は横浜市においては全体の 1/4 程 度であったが、ボーリング柱状図や周辺の地形・地質や 地盤情報などを参考にすれば卓越周期の推定が可能な地 点を含めると、約 95%の地点で卓越周期を推定すること ができ、常時微動観測は地盤の卓越周期を知る手段の一 つとなることが確認できた。

3)地形形成史を考慮して区分した各河川の低地および台 地について堆積層の層厚と卓越周期との関係を回帰式で 関係付け検討した結果、係数Aは、帷子川低地と大岡川 低地で同じ値となり、このことは両者の堆積物が同じ構 成をしていることと整合する。また、鶴見川中流部・下 流と金沢低地では係数Bは異なるが、係数Aは同様の値 を示した。このことは、これらの地域の沖積層の層構造 や堆積年代が類似していることから説明できる。

4)台地の係数 A は低地よりも小さい。これは台地の表層 部の堆積物が沖積低地の堆積物よりも固結が進んでいる ことと調和する。また、台地では相関係数が小さく、常 時微動から求まる卓越周期は未固結層厚(関東ローム層 厚)に大きく依存していない。また係数 B が大きく、回 帰式から求めたせん断波速度が 700m/s 前後を示すこと から、台地での常時微動観測による卓越周期は、ローム 層以深の地盤構造も反映したものと考えられる。

以上述べたように、常時微動観測から求まる地盤の卓 越周期は、地形の成り立ちや堆積物の性質などに依存し ていることを明らかにし、地形形成史を考慮することの 必要性を示した。

参考文献

- 1) 横浜市環境研究所:横浜市地形地質図,2004年
- 2) 横浜市:横浜市地盤地図情報 地盤 View
- 3) 上野直洋他:マイクロゾーニングにおける微動活用法の検 討-その1 横浜市を対象とした高密度観測,地域安全学 会梗概集, No. 27, 2010.11
- 4) 山本俊雄他:マイクロゾーニングにおける微動活用法の検討-その2 地形・地質条件からのアプローチ,地域安全学会梗概集, No. 27, 2010.11