地震力と津波波力を同一指標で表した損傷度曲線の提案 —ガソリン供給施設への適用に向けて—

Proposal of Vulnerability Functions for Oil Refineries taking into account both Ground Shaking and Tsunami Force

佐伯琢磨¹,清野純史²

Takuma SAEKI¹ and Junji KIYONO²

1国立研究開発法人防災科学技術研究所社会防災システム研究部門

Social System Research Department, National Research Institute for Earth Science and Disaster Resilience ²京都大学大学院工学研究科

Graduate School of Engineering, Kyoto University

The Great East Japan Earthquake exerted serious damage over an unprecedentedly wide range. The earthquake prevented the supply of materials indispensable to restoration and revival in its aftermath, including fuels such as gasoline. In this study, the method to estimate a supply delay of gasoline for a hypothetical Nankai Trough Earthquake is proposed. In this method, we developed vulnerability functions of oil refineries which took into account both ground shaking and tsunami force simultaneously.

Keywords: Earthquake, Tsunami, Gasoline, Delay of supply, Vulnerability functions

1. はじめに

(1)研究の目的

東日本大震災は、かつてない広い範囲で甚大な被害を もたらし、ガソリンなどの燃料をはじめとする災害から の復旧・復興に欠かせない物資の供給が停滞した. 佐 伯・清野¹は、発災直後から関係官庁などから発信され た文献の調査や被災地の製油所へのヒアリングを行うと ともに、システムダイナミクスの問題解決手法を適用し、 地震後のガソリン供給停滞問題の原因やボトルネックを 明らかにした.本論文では、さらに今後発生が予想され る南海トラフ巨大地震などの広域災害において、懸念さ れる同種の問題発生を軽減することを目的とし、そのた めの検討方法を示すとともに、予測に必要となる製油所 損傷度曲線の検討を行う.

(2) 南海トラフ巨大地震への適用に向けた課題

佐伯・清野¹より,被災地域内のガソリン供給のボト ルネックとして,①製油所や油槽所からガソリンスタン ドにガソリン等を供給するタンクローリーの不足があっ たこと,②タンクローリーが1日に運送できる回数は通常 時は3回が標準だが、タンクローリーにガソリンを積み込 む製油所や油槽所のタンクローリー積場機能が被害を受 けると1日に運送できる回数が少なくなること,などが明 らかとなった.

以上の点などを踏まえ,東日本大震災の事例について 構築したシステムダイナミクス・モデルを,今後発生が 懸念される南海トラフ巨大地震に対しても応用すること を考える必要がある.それに先立ち,東日本大震災と南 海トラフ巨大地震の場合のガソリン供給への影響を,(a) 供給元の観点,(b)供給ルートの観点から,以下のように まとめた.

南海トラフ巨大地震における西日本地方は,東日本大 震災における東北地方に比べて,(a)供給元の観点では, 製油所等も多く有利な点が多い.しかし,(b)供給ルート の観点からは,道路の二重化などがなされていないため, 道路被害がボトルネックとなる可能性があるなど,懸念 される点も残る.

(3)想定地震に対する被害予測のフローの設定および 本論文の対象範囲

想定地震に対するガソリンの供給停滞を予測する際の フローの例を、図1のように考えた.その際にインプット となる要素として、以下のものがあげられる. i)想定地震に対する地震動強さ、津波浸水深 ii)地震動および津波に対する製油所の損傷度曲線 iii)当該製油所の精製能力 iv)被災地域内在庫量と被災地域外からの融通量 v)被災地域内の道路の損傷状況 このうちi)とv)は、想定地震に対する被害予測結果

であり,既往研究から推定することを考えている.また iii)は,石油連盟等の資料から設定可能である.

ii)では、東日本大震災における製油所の被害実例から、 地震動強さあるいは津波浸水深と、製油所の被害割合の 関係を損傷度曲線として設定する. さらに被害割合から 求めた操業停止期間と当該製油所の精製能力を掛け合わ せて,当該製油所の操業停止によるガソリン精製量の減 少量を求める. なお2011年1月現在,日本全国には,製油 所が27ヵ所あり,その多くが瀬戸内海を中心とする西日 本に存在する²⁾.

iv)では,被災地域内で既にあるガソリンの在庫量と被災地域外の製油所からのガソリンの融通量を求め, ii)で求めたガソリン精製量の減少量に加味する.

以上をもとに,被災地域内外におけるガソリン供給量 の時系列的な復旧状況をアウトプットとし,ガソリンの 供給停滞を評価するのが,研究の全体像である.

本論文では、地震動強さおよび津波浸水深をパラメー タとする製油所を対象とした損傷度曲線を求める部分が 対象範囲である.

2. 地震力と津波波力を考慮した損傷度曲線の 構築

(1) 基本的なコンセプト

従来の損傷度曲線では、同一建物を対象にしていても、 地震あるいは津波のいずれかのハザードのみを対象に損 傷度曲線が構築されており、それぞれのハザードについ て評価が必要になる.この点、地震力あるいは津波波力 といった力に注目すれば、同一指標で統一的に評価でき、 例えば製油所敷地内のような津波浸水域とそうでない地 域の境界付近の被害評価に適しているのではないかと考 えたのが、本研究の特徴である.

地震力と津波波力を同一指標で表した損傷度曲線を構築するにあたり、図2のように基本的なコンセプトを考えた.まず,静的な力を仮定して、地震力による加速度と津波波力による加速度をそれぞれ求める.地震力による加速度 α_i については、その地点の地表最大加速度を採用する.津波波力による加速度 α_i については、まず津波の浸水深のほか、建物の幅や高さから津波波力を求める.浸水深のみをパラメータとした損傷度曲線と比べた場合の、この方法のメリットとしては、個々の建物の形状に応じた津波波力の算出が可能なことがあげられる.この津波波力を建物質量で除することにより、津波に起因する加速度 α_i が求められる. $\alpha_j \ge \alpha_i$ を組み合わせて求めた換算加速度 α_j をパラメータに損傷度曲線を構築する.

なお建物形状といった必要情報が増えると、広域での 評価はしづらくなると考えられるが、本研究で対象とし ている製油所敷地内のように、図面が用意できる範囲内

図2 地震力と津波波力を同一指標で表した損傷度曲線の構築の基本的なコンセプト

であれば、全ての建物の幅や高さは把握できるので、予 測精度が高くなるメリットのほうが大きいと考えた.ま たこれからは、建物形状などの情報整備が進むことが考 えられるので、将来は広域での予測も可能になるかもし れない.

(2)使用したデータ

損傷度曲線を構築するにあたり、まず建物被害データ が必要となるが、本論文では、東日本大震災で被災した 建物の情報として、門馬ほか³⁾のデータベースを用いた. また、津波浸水深のデータとして、国土交通省都市局 「復興支援調査アーカイブ」データ⁴⁾を用いた.このデ ータは、津波の浸水区域、浸水深、建物被災状況を調査 したものである.本研究では、津波による浸水区域で、 つまり地震動と津波による被害が両方入り混じった区域 での評価を試みている.この区域では、多かれ少なかれ 津波の被害を受けているが、特に津波の被害が小さかっ た場合の被害を地震動により説明しようとしている.

これらを宮城県名取市において重ね合わせ表示したものが,図3である.

(3) 地震力および津波波力による加速度の算出

南三陸町 10 棟,名取市 10 棟の建物について,地震力 および津波波力の算出を行った.地震力による加速度に ついては、門馬ほか³⁾に収録されている計測震度のメッ シュ情報から童・山崎⁵⁾を用いて,地表最大加速度を求 め、α_jとした.津波波力による加速度については、内閣 府防災担当による津波避難ビルガイドラインのに示されている津波波力の式(式[1]参照)に、門馬ほか³のデータベースから読み取れる建物の幅などのデータを入力することにより求めた.表1に計20棟について、被害状況、パラメータおよび計算値を示している.斜字は計算により求められた値である.なお今回は、製油所の損傷度曲線を求めるのが目的であるので、比較的大規模な建物を選択し、その構造および階数を、非木造の2階建て(高さ8m)、1 ㎡当たりの自重および積載荷重の合計を3,200kgと仮定した.また水の単位体積質量は、海水として1.030 (t/m³)とした.

$$Qz = \frac{1}{2}\rho gB\{(6\hbar z_2 - z_2^2) - (6\hbar z_1 - z_1^2)\}$$
[1]

ここに,

- Qz:構造設計用の進行方向の津波波力(kN)
- ρ:水の単位体積質量(t/m³)
- g:重力加速度(m/s²)
- B:当該部分の幅(流れに直交する方向) (m)
- h:設計用浸水深(m)
- $z_1: 受圧面の最小高さ (0 \leq z_1 \leq z_2) (m)$
- z₂:受圧面の最高高さ(z₁≤z₂≤3h) (m)

これを建物質量で除して、津波波力による加速度 α_t を 求めた.

図3 建物被害区分³⁾と津波浸水深⁴⁾ (宮城県名取市の例)

市町名	建物 ID	被害区分	計測 震度	浸水深 h (m)	建物幅 B (m)	建物 奥行 (m)	<i>地震力に よる加速度</i> α _j (gal)	津波波力 Qz(kN)	<i>津波波力に</i> よる加速度 α _t (gal)	<i>換算 加速度</i> a _{jt} (gal)
南三陸町	M01	全壊	5.85	8.1	50	87	607	81,963	589	607
南三陸町	M02	全壊	5.84	15.6	34	17	599	117,510	6,353	6,353
南三陸町	M03	大規模半壊	5.52	3.4	11	16	406	5,507	978	978
南三陸町	M04	半壊	5.52	0	9	16	406	0	0	406
南三陸町	M05	一部損壞	5.52	0	28	12	406	0	0	406
南三陸町	M06	全壊	5.60	3.7	11	23	448	6,307	779	779
南三陸町	M07	半壊	5.60	0	18	11	448	0	0	448
南三陸町	M08	一部損壞	5.60	1.5	16	10	448	1,635	319	448
南三陸町	M09	全壊	5.59	7.3	8	14	442	11,564	3,226	3,226
南三陸町	M10	全壊	5.81	7.4	18	7	578	26,454	6,561	6,561
名取市	N01	全壊	5.81	3.8	44	100	578	26,293	187	578
名取市	N02	大規模半壊	5.90	2.8	11	40	645	3,908	278	645
名取市	N03	半壊	5.88	0.8	46	60	629	1,337	15	629
名取市	N04	一部損壊	5.88	0.2	91	189	629	165	0	629
名取市	N05	一部損壊	5.88	0	60	62	629	0	0	629
名取市	N06	全壊	5.91	3.3	45	16	653	21,440	931	931
名取市	N07	大規模半壊	5.91	1.8	10	15	653	1,472	307	653
名取市	N08	大規模半壊	5.91	2.8	13	6	653	4,619	1,851	1,851
名取市	N09	全壊	5.91	1.6	37	11	653	4,302	330	653
名取市	N10	半壊	5.91	1.6	16	15	653	1,861	242	653

表 1 20 棟の建物についての被害状況、パラメータおよび計算値

図4 換算加速度と被害割合の関係および回帰された損傷度曲線

(4) 換算加速度 α_{jt}の算出

換算加速度 α_{jt} は、地震力による加速度 α_{j} と津波波力 による加速度 α_{t} を組み合わせて求める。組み合わせる方 法としては、 α_{j} と α_{t} の大きいほうを取る方法を採用した。 これは、地震動と津波のどちらか大きいほう一方が、被 害を決定するという考えに基づく。

(5)損傷度曲線の構築

上記の 20 棟に対し, 横軸を換算加速度 α_{jt}, 縦軸を建 物1棟の中の被害割合としてプロットし, 最小二乗法に より, 対数正規分布の累積確率分布関数(式[2]参照) へ の回帰曲線を求めた.

$$F(x;\lambda,\zeta) = \Phi\left(\frac{\ln x - \lambda}{\zeta}\right)$$
[2]

ここに、
Φは標準正規分布の累積確率分布関数である.

結果を図 4 に示す. なお,被害区分を被害割合に換算 するにあたり,内閣府の被害認定統一基準⁷⁷から,住家 の主要な構成要素の経済的被害を住家全体に占める損害 割合で表した場合,全壊は 50%以上,大規模半壊は 40% 以上 50%未満,半壊は 20%以上 50%未満,地震保険にお ける一部損は,建物の主要構造部の損害の額が,その建 物の時価の 3%以上 20%未満である⁸⁰ことから,これら を参考に,大規模半壊,半壊,一部損壊は,範囲の平均 を考え,それぞれ 45%,35%,11.5%に換算した.全壊に ついては,本研究での被害割合は,被災前後の経済的価 値の割合で評価しているが,津波で被災した建物で構造 躯体が残っているケースでも,経済的価値は無くなって しまうため,被害割合は 100%とした.

回帰の結果,係数 λ は 6.48, ζ は 0.751,相関係数は 0.558 となった.

3. 既往の損傷度曲線との比較

(1) 津波を対象とした損傷度曲線との比較

奥野ほか %は、東北地方太平洋沖震の津波被害現調査 結果に基づく非住家建物(工場、倉庫、事務所建物など) を対象とした津波損傷度曲線を提案している.ここで津 波損傷度曲線とは,個々の建物の損傷度合を評価対象と しているので、本研究における個々の建物の被害割合を 評価対象とした損傷度曲線と比較可能である.ただし, 奥野ほか ⁹は、浸水深のみをパラメータに津波損傷度曲 線を構築しているため、本研究の損傷度曲線と比較する 場合,建物の大きさ(幅,奥行き)を仮定して,津波波 力を算出する必要がある.今回は,奥野ほか ⁹の文献中 の図表を参考に、床面積を400 m とした RC 造あるいは S 造2階建て(高さ8m)の建物を仮定して,奥野ほか9の 津波損傷度曲線を求める際に用いた建物データが、(a)全 て幅 20m×奥行き 20m, (b)全て幅 40m×奥行き 10m, (c) 全て幅 10m×奥行き 40m, と仮定した各場合について, 図5にRC造,図6にS造(工場・倉庫),図7にS造

(一般)を、2章で求めた損傷度曲線と合わせて示した. 図5を見ると、建物が全て幅20m×奥行き20mである と仮定した奥野ほか⁹の(a)の津波損傷度曲線に比べ、求 めた損傷度曲線は、同じ被害割合のときの換算加速度が 大きくなっている.これは、奥野ほか⁹の津波損傷度曲 線が、浸水深のみ、すなわち津波波力のみで地震力によ る被害も説明しており、本論文で考慮している地震力に よる加速度が評価されていないためと考えられる.また、 求めた損傷度曲線は、建物が全て幅 40m×奥行き 10m で あると仮定した(b)、および全て幅 10m×奥行き 40m であ ると仮定した(c)の津波損傷度曲線の間に入っており、奥 野ほか⁹⁰の津波損傷度曲線と大きく齟齬がないことを確 認した.また図6、図7についても、同様の傾向である.

図 6 換算加速度ベースで示した奥野ほか⁹⁰の S 造 (工場・倉庫)の津波損傷度曲線および求めた 損傷度曲線

(2) 地震動を対象とした損傷度曲線との比較

高井・岡田¹⁰は、デューデリジェンスのための建物耐 震診断結果を利用した損傷度評価関数を、木造建物と RC 造建物について作成している.このうち RC 造建物は、 耐震診断値 Is ごとに作成されていることから、今回求め た損傷度曲線と比較した.なお、高井・岡田¹⁰は、地表 最大速度を地震動指標として作成されているが、これを 地表最大加速度にするために、童・山崎 ⁵を用いて変換 した.この結果、図 8 に示すように、Is が 0.2 の場合と 0.3 の場合の間に求めた損傷度曲線が入る結果となった.

この理由として、求めた損傷度曲線が地震動と津波を 両方とも考慮しているのに対し、高井・岡田¹⁰は、地震 動のみを考慮していることがあげられる。今回対象とし た 20棟の建物は、それほど耐震性に劣る建物とは考えら れないが、高井・岡田¹⁰を用いて、仮に津波まで考慮し た場合は、Is 値が 0.2~0.3 とかなり耐震性に劣る建物と 同等の損傷度曲線となることを示している。

図8 換算加速度ベースで示した高井・岡田¹⁰の RC 造 の地震動損傷度曲線および求めた損傷度曲線

4. まとめと今後の課題

本論文では、今後発生が予想される南海トラフ巨大地 震などの広域災害において、懸念される同種の問題発生 を軽減することを目的とし、そのための検討方法をフロ ーチャートで示すとともに、予測に必要となる製油所損 傷度曲線の検討を行い、既往の研究と比較することによ り、その妥当性を検証した.

今後は、今回得られた損傷度曲線を用いて、南海トラ フ巨大地震における製油所の被害想定を行うとともに、 問題発生の予測およびその軽減策について考える.

謝辞

本研究は、「南海トラフ広域地震防災研究プロジェクト」 の一環として行われたものである.本論文の作成にあた っては、防災科学技術研究所の中村洋光氏、門馬直一氏、 長田正樹氏のご協力を得た.記して御礼申し上げる.

参考文献

- 佐伯琢磨,清野純史:東日本大震災におけるガソリン供給問題に関する検討とシステムダイナミクス・モデルの適用,日本地震工学会論文集,第14巻第1号,pp.34-43,2014.
- 2) 石油連盟ホームページ: http://www.paj.gr.jp/statis/statis/data/08/ paj-8 精製能力一覧 201101up.xls
- 3)門馬直一,藤原広行,中村洋光,下村博之,岡部隆宏,藤澤 誠二:東北地方太平洋沖地震の建物被害情報データベースの 構築,第14回日本地震工学シンポジウム,pp.931-937,2014.
- 国土交通省都市局:「復興支援調査アーカイブ」データ, http://fukkou.csis.u-tokyo.ac.jp
- 5) 童華南,山崎文雄:地震動強さ指標と新しい気象庁震度との 対応関係,生産研究,第48巻11号,pp.547-550,1996.
- 内閣府防災担当:津波避難ビルガイドライン,巻末資料② (2015年9月1日現在,下記ページよりダウンロード可能) http://www.2x4assoc.or.jp/builder/news/pdf/jisinchosa_08.pdf
- 7) 内閣府:被害認定基準運用指針, p.1, http://www.bousai.go.jp/taisaku/pdf/shishinall.pdf
- 8) 損害保険料率算出機構:日本の地震保険, pp.64-65, http://www.giroj.or.jp/disclosure/q_ofjapan/nihonjishin_3.pdf
- 9) 奥野峻也,登梛正夫,山口亮,山本治貴,越村俊一:東北地 方太平洋沖震の津波被害現調査結果に基づく非住家建物を対 象とした津波損傷度曲線,日本地震工学会論文集,第14巻 第5号,pp.68-81,2014.
- 10)高井 伸雄, 岡田 成幸: デューデリジェンスのための建物耐 震診断結果を利用した損傷度評価関数(2)木造建物とRC 造建 物(解析編),日本建築学会大会学術講演梗概集 B-2 分冊、 pp.27-28, 2002.

(原稿受付 2016.9.10) (登載決定 2017.1.21)